Mémo Trigonométrie
Définition
Une définition de la trigonométrie se base sur les triangles rectangles.
Dans ce cas, on a :
\[\sin\alpha = \frac{a}{c} \quad\quad\quad \cos\alpha = \frac{b}{c} \quad\quad\quad \tan\alpha = \frac{a}{b}\]
Pythagore ∶ | \(a^2+b^2 = c^2\) |
Al-Kashi ∶ | \(a = \sqrt{b^2+c^2-2\times b\times c\times \cos\alpha}\) |
Thalès ∶ | \(\frac{AD}{AB} = \frac{AE}{AC} = \frac{DE}{BC}\) |
Identités Remarquables
Quel que soit l’angle \(\alpha\), on a (d’après le théorème de Pythagore) : \(\cos^2\alpha + \sin^2\alpha = 1\)
Formules d’addition et de différence des arcs
\(\sin(\alpha -\beta )\) | \(=\) | \(\sin\alpha \times \cos\beta - \cos\alpha \times \sin\beta\) | \(\quad \quad \quad\) | \(\sin(\alpha + \beta )\) | \(=\) | \(\sin\alpha \times \cos\beta + \cos\alpha \times \sin\beta\quad\) |
\(\cos(\alpha -\beta )\) | \(=\) | \(\cos\alpha \times \cos\beta + \sin\alpha \times \sin\beta\) | \(\quad \quad \quad\) | \(\cos(\alpha + \beta )\) | \(=\) | \(\cos\alpha \times \cos\beta - \sin\alpha \times \sin\beta\quad\) |
\(\tan(\alpha -\beta )\) | \(=\) | \(\left(\tan\alpha - \tan\beta\right)/\left(1 + \tan\alpha \times \tan\beta\right)\) | \(\quad \quad \quad\) | \(\tan(\alpha + \beta )\) | \(=\) | \(\left(\tan\alpha - \tan\beta\right)/\left(1 + \tan\alpha \times \tan\beta\right)\quad\) |
Formules de duplication des arcs
\(\cos(2\alpha)\) | \(=\) | \(\begin{cases} \cos^2\alpha - \sin^2\alpha \\ 2\times \cos^2\alpha - 1 \\ 1 - 2 \times \sin^2\alpha \end{cases}\) | \(\quad \quad \quad\) | \(\cos(3\alpha)\) | \(=\) | \(4\times \cos^3\alpha-3 \times \cos\alpha\) |
\(\sin(2\alpha)\) | \(=\) | \(2\times \sin \alpha\times \cos\alpha\) | \(\quad \quad \quad\) | \(\sin(3\alpha)\) | \(=\) | \(3 \times \sin \alpha - 4 \times \sin^3\alpha\) |
\(\tan(2\alpha)\) | \(=\) | \(\left(2 \times \tan\alpha\right)/\left(1-\tan^2\alpha\right)\) | \(\quad \quad \quad\) | \(\tan(3\alpha)\) | \(=\) | \(\left(3 \times \tan\alpha - \tan^3\alpha\right)/\left(1 - 3 \times \tan^2\alpha\right)\quad\quad\quad\) |
Formules d’addition et de différence de deux sinus et de deux cosinus converties en produit
\(\cos(\alpha + \beta ) - \cos(\alpha - \beta )\) | \(=\) | \(- 2 \times \sin\alpha \times \sin\beta\) | \(\quad \quad \quad\) | \(\cos(\alpha + \beta ) + \cos(\alpha - \beta )\) | \(=\) | \(2 \times \cos\alpha \times \cos\beta\quad\quad\quad\) |
\(\sin(\alpha + \beta ) - \sin(\alpha - \beta )\) | \(=\) | \(2 \times \cos\alpha \times \sin\beta\) | \(\quad \quad \quad\) | \(\sin(\alpha + \beta ) + \sin(\alpha - \beta )\) | \(=\) | \(2 \times \sin\alpha \times \cos\beta\quad\quad\quad\) |
Identités trigonométrique
\[\tan\alpha = \frac{\sin\alpha}{\cos\alpha} \quad\quad\quad \cos^2\alpha + \sin^2\alpha = 1 \quad\quad\quad \tan^2\alpha + 1 = \frac{1}{\cos^2\alpha}\]
Relation entre les fonctions trigonométriques
\[\cos\alpha = \sqrt{1-\sin^2\alpha} = \frac{1}{\sqrt{1+\tan^2\alpha}}\\
\sin\alpha = \sqrt{1-\cos^2\alpha} = \frac{\tan\alpha}{\sqrt{1+\tan^2\alpha}}\\
\tan\alpha = \frac{\sqrt{1-\cos^2\alpha}}{\cos\alpha} = \frac{\sin\alpha}{\sqrt{1-\sin^2\alpha}}\]
Cercle Trigonométrique
Propriétés liées au cercle Trigonométrique
Propriété | Sinus | Cosinus | Tangente | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Réflexion d’axe \(a=0\) | \(\quad\) | \(\sin(-\alpha)\) | \(=\) | \(-\sin\alpha\) | \(\quad\) | \(\cos(-\alpha)\) | \(=\) | \(\cos\alpha\) | \(\quad\) | \(\tan(-\alpha)\) | \(=\) | \(-\tan\alpha\quad\quad\) |
Réflexion d’axe \(a=\pi/4\) | \(\quad\) | \(\sin(\pi/2-\alpha)\) | \(=\) | \(\cos\alpha\) | \(\quad\) | \(\cos(\pi/2-\alpha)\) | \(=\) | \(\sin\alpha\) | \(\quad\) | \(\tan(\pi/2-\alpha)\) | \(=\) | \(\cot\alpha\quad\quad\) |
Réflexion d’axe \(a=\pi/2\) | \(\quad\) | \(\sin(\pi-\alpha)\) | \(=\) | \(\sin\alpha\) | \(\quad\) | \(\cos(\pi-\alpha)\) | \(=\) | \(-\cos\alpha\) | \(\quad\) | \(\tan(\pi-\alpha)\) | \(=\) | \(-\tan\alpha\quad\quad\) |
Décalage de \(\pi/2\) | \(\quad\) | \(\sin(\alpha+\pi/2)\) | \(=\) | \(\cos\alpha\) | \(\quad\) | \(\cos(\alpha+\pi/2)\) | \(=\) | \(-\sin\alpha\) | \(\quad\) | \(\tan(\alpha+\pi/2)\) | \(=\) | \(-\cot\alpha\quad\quad\) |
Décalage de \(\pi\) | \(\quad\) | \(\sin(\alpha+\pi)\) | \(=\) | \(-\sin\alpha\) | \(\quad\) | \(\cos(\alpha+\pi)\) | \(=\) | \(-\cos\alpha\) | \(\quad\) | \(\tan(\alpha+\pi)\) | \(=\) | \(\tan\alpha\quad\quad\) |
Décalage de \(2\pi\) | \(\quad\) | \(\sin(\alpha+2\pi)\) | \(=\) | \(\sin\alpha\) | \(\quad\) | \(\cos(\alpha+2\pi)\) | \(=\) | \(\cos\alpha\) | \(\quad\) | \(\tan(\alpha+2\pi)\) | \(=\) | \(\tan\alpha\quad\quad\) |