Mémo Trigonométrie

Définition

Triangle Une définition de la trigonométrie se base sur les triangles rectangles. Dans ce cas, on a :

\[\sin\alpha = \frac{a}{c} \quad\quad\quad \cos\alpha = \frac{b}{c} \quad\quad\quad \tan\alpha = \frac{a}{b}\]
Pythagore ∶     \(a^2+b^2 = c^2\)
Al-Kashi ∶     \(a = \sqrt{b^2+c^2-2\times b\times c\times \cos\alpha}\)
Thalès ∶     \(\frac{AD}{AB} = \frac{AE}{AC} = \frac{DE}{BC}\)

Identités Remarquables

Quel que soit l’angle \(\alpha\), on a (d’après le théorème de Pythagore) : \(\cos^2⁡\alpha + \sin^2\alpha = 1\)

Formules d’addition et de différence des arcs

\(\sin⁡(\alpha -\beta )\) \(=\) \(\sin⁡\alpha \times \cos⁡\beta - \cos⁡\alpha \times \sin⁡\beta\) \(\quad \quad \quad\) \(\sin⁡(\alpha + \beta )\) \(=\) \(\sin⁡\alpha \times \cos⁡\beta + \cos⁡\alpha \times \sin⁡\beta\quad\)
\(\cos(\alpha -\beta )\) \(=\) \(\cos\alpha \times \cos⁡\beta + \sin\alpha \times \sin⁡\beta\) \(\quad \quad \quad\) \(\cos(\alpha + \beta )\) \(=\) \(\cos\alpha \times \cos⁡\beta - \sin\alpha \times \sin⁡\beta\quad\)
\(\tan(\alpha -\beta )\) \(=\) \(\left(\tan\alpha - \tan\beta\right)/\left(1 + \tan\alpha \times \tan\beta\right)\) \(\quad \quad \quad\) \(\tan(\alpha + \beta )\) \(=\) \(\left(\tan\alpha - \tan\beta\right)/\left(1 + \tan\alpha \times \tan\beta\right)\quad\)

Formules de duplication des arcs

\(\cos(2\alpha)\) \(=\) \(\begin{cases} \cos^2⁡\alpha - \sin^2\alpha \\ 2\times \cos^2⁡\alpha - 1 \\ 1 - 2 \times \sin^2\alpha \end{cases}\) \(\quad \quad \quad\) \(\cos(3\alpha)\) \(=\) \(4\times \cos^3⁡\alpha-3 \times \cos\alpha\)
\(\sin(2\alpha)\) \(=\) \(2\times \sin \alpha\times \cos\alpha\) \(\quad \quad \quad\) \(\sin(3\alpha)\) \(=\) \(3 \times \sin \alpha - 4 \times \sin^3⁡\alpha\)
\(\tan⁡(2\alpha)\) \(=\) \(\left(2 \times \tan⁡\alpha\right)/\left(1-\tan^2⁡\alpha\right)\) \(\quad \quad \quad\) \(\tan⁡(3\alpha)\) \(=\) \(\left(3 \times \tan⁡\alpha - \tan^3⁡\alpha\right)/\left(1 - 3 \times \tan^2⁡\alpha\right)\quad\quad\quad\)

Formules d’addition et de différence de deux sinus et de deux cosinus converties en produit

\(\cos(\alpha + \beta ) - \cos(\alpha - \beta )\) \(=\) \(- 2 \times \sin\alpha \times \sin\beta\) \(\quad \quad \quad\) \(\cos(\alpha + \beta ) + \cos(\alpha - \beta )\) \(=\) \(2 \times \cos\alpha \times \cos⁡\beta\quad\quad\quad\)
\(\sin(\alpha + \beta ) - \sin(\alpha - \beta )\) \(=\) \(2 \times \cos\alpha \times \sin\beta\) \(\quad \quad \quad\) \(\sin(\alpha + \beta ) + \sin(\alpha - \beta )\) \(=\) \(2 \times \sin\alpha \times \cos\beta\quad\quad\quad\)

Identités trigonométrique

\[\tan\alpha = \frac{\sin\alpha}{\cos\alpha} \quad\quad\quad \cos^2⁡\alpha + \sin^2\alpha = 1 \quad\quad\quad \tan^2⁡\alpha + 1 = \frac{1}{\cos^2\alpha}\]

Relation entre les fonctions trigonométriques

\[\cos\alpha = \sqrt{1-\sin^2\alpha} = \frac{1}{\sqrt{1+\tan^2\alpha}}\\ \sin\alpha = \sqrt{1-\cos^2\alpha} = \frac{\tan\alpha}{\sqrt{1+\tan^2\alpha}}\\ \tan\alpha = \frac{\sqrt{1-\cos^2\alpha}}{\cos\alpha} = \frac{\sin\alpha}{\sqrt{1-\sin^2\alpha}}\]

Cercle Trigonométrique

Cercle Trigonométrique

Radian $$0$$ $$\frac{\pi}{6}$$ $$\frac{\pi}{4}$$ $$\frac{\pi}{3}$$ $$\frac{\pi}{2}$$ $$\frac{2\pi}{3}$$ $$\frac{3\pi}{4}$$ $$\frac{5\pi}{6}$$ $$\pi$$ $$\frac{7\pi}{6}$$ $$\frac{5\pi}{4}$$ $$\frac{4\pi}{3}$$ $$\frac{3\pi}{2}$$ $$\frac{5\pi}{3}$$ $$\frac{7\pi}{4}$$ $$\frac{11\pi}{6}$$ $$2\pi$$
Degré $$\ 0\ $$ $$30$$ $$45$$ $$60$$ $$90$$ $$120$$ $$135$$ $$150$$ $$180$$ $$210$$ $$225$$ $$240$$ $$270$$ $$300$$ $$315$$ $$330$$ $$360$$
$$\sin$$ $$0$$ $$\frac{1}{2}$$ $$\frac{\sqrt{2}}{2}$$ $$\frac{\sqrt{3}}{2}$$ $$1$$ $$\frac{\sqrt{3}}{2}$$ $$\frac{\sqrt{2}}{2}$$ $$\frac{1}{2}$$ $$0$$ $$-\frac{1}{2}$$ $$-\frac{\sqrt{2}}{2}$$ $$-\frac{\sqrt{3}}{2}$$ $$-1$$ $$-\frac{\sqrt{3}}{2}$$ $$-\frac{\sqrt{2}}{2}$$ $$-\frac{1}{2}$$ $$0$$
$$\cos$$ $$1$$ $$\frac{\sqrt{3}}{2}$$ $$\frac{\sqrt{2}}{2}$$ $$\frac{1}{2}$$ $$0$$ $$-\frac{1}{2}$$ $$-\frac{\sqrt{2}}{2}$$ $$-\frac{\sqrt{3}}{2}$$ $$-1$$ $$-\frac{\sqrt{3}}{2}$$ $$-\frac{\sqrt{2}}{2}$$ $$-\frac{1}{2}$$ $$0$$ $$\frac{1}{2}$$ $$\frac{\sqrt{2}}{2}$$ $$\frac{\sqrt{3}}{2}$$ $$1$$
$$\tan$$ $$0$$ $$\frac{1}{\sqrt{3}}$$ $$1$$ $$\sqrt{3}$$ $$-$$ $$-\sqrt{3}$$ $$-1$$ $$-\frac{1}{\sqrt{3}}$$ $$0$$ $$\frac{1}{\sqrt{3}}$$ $$1$$ $$\sqrt{3}$$ $$-$$ $$-\sqrt{3}$$ $$-1$$ $$-\frac{1}{\sqrt{3}}$$ $$0$$

Propriétés liées au cercle Trigonométrique

Propriété   Sinus       Cosinus       Tangente    
Réflexion d’axe \(a=0\) \(\quad\) \(\sin(-\alpha)\) \(=\) \(-\sin\alpha\) \(\quad\) \(\cos⁡(-\alpha)\) \(=\) \(\cos⁡\alpha\) \(\quad\) \(\tan(-\alpha)\) \(=\) \(-\tan\alpha\quad\quad\)
Réflexion d’axe \(a=\pi/4\) \(\quad\) \(\sin(\pi/2-\alpha)\) \(=\) \(\cos⁡\alpha\) \(\quad\) \(\cos⁡(\pi/2-\alpha)\) \(=\) \(\sin\alpha\) \(\quad\) \(\tan(\pi/2-\alpha)\) \(=\) \(\cot⁡\alpha\quad\quad\)
Réflexion d’axe \(a=\pi/2\) \(\quad\) \(\sin(\pi-\alpha)\) \(=\) \(\sin\alpha\) \(\quad\) \(\cos⁡(\pi-\alpha)\) \(=\) \(-\cos⁡\alpha\) \(\quad\) \(\tan(\pi-\alpha)\) \(=\) \(-\tan\alpha\quad\quad\)
Décalage de \(\pi/2\) \(\quad\) \(\sin(\alpha+\pi/2)\) \(=\) \(\cos⁡\alpha\) \(\quad\) \(\cos⁡(\alpha+\pi/2)\) \(=\) \(-\sin\alpha\) \(\quad\) \(\tan(\alpha+\pi/2)\) \(=\) \(-\cot⁡\alpha\quad\quad\)
Décalage de \(\pi\) \(\quad\) \(\sin(\alpha+\pi)\) \(=\) \(-\sin\alpha\) \(\quad\) \(\cos⁡(\alpha+\pi)\) \(=\) \(-\cos⁡\alpha\) \(\quad\) \(\tan(\alpha+\pi)\) \(=\) \(\tan\alpha\quad\quad\)
Décalage de \(2\pi\) \(\quad\) \(\sin(\alpha+2\pi)\) \(=\) \(\sin\alpha\) \(\quad\) \(\cos⁡(\alpha+2\pi)\) \(=\) \(\cos⁡\alpha\) \(\quad\) \(\tan(\alpha+2\pi)\) \(=\) \(\tan\alpha\quad\quad\)
Thibaut Monseigne

Thibaut Monseigne

Ingénieur Recherche et Développement en Interface Cerveau-Machine.